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Abstract

This report presents the overview of the runs related to Ad-hoc Video Search (AVS) and Activities
in Extended Video (ActEV) tasks on behalf of the ITI-CERTH team. Our participation in the
AVS task involves a collection of five cross-modal deep network architectures and numerous pre-
trained models, which are used to calculate the similarities between video shots and queries. These
calculated similarities serve as input to a trainable neural network that effectively combines them.
During the retrieval stage, we also introduce a normalization step that utilizes both the current and
previous AVS queries for revising the combined video shot-query similarities. For the ActEV task,
we adapt our framework to support a rule-based classification to overcome the challenges of detecting
and recognizing activities in a multi-label manner while experimenting with two separate activity
classifiers.

1 Introduction

In this paper, the work carried out in the context of TRECVID 2024 by the ITI-CERTH1 team in
the area of video analysis, retrieval and understanding is presented. ITI-CERTH has participated
in TRECVID [1] for many years as it is one of the most popular video understanding challenges.
Especially, ITI-CERTH has participated in Search and Semantic Indexing (SIN) tasks under the
research network COST292 (TRECVID 2006-2008) and the MESH and K-SPACE (TRECVID 2007-
2008) EU-Funded research projects, correspondingly. From 2009 to 2015 [2, 3, 4, 5, 6, 7, 8] ITI-CERTH
team has participated as a stand-alone organization in a significant number of tasks including but not
limited to SIN, KIS, INS, and MED. In both 2016 [9] and 2017 [10], ITI-CERTH participated in the
AVS, MED, INS and SED tasks. In 2018 [11], ITI-CERTH participated in the AVS, INS and ActEV;
in 2019 [12], the participation was limited to the ActEV task. In 2020 [13] ITI-CERTH participated
in the AVS, DSDI and ActEV tasks; in 2021 [14] and 2022 [15] ITI-CERTH participated in the AVS
and ActEV tasks. Lastly, in 2023 [16] the participation was only for the AVS task. Considering the
above-mentioned submissions, we aim to evaluate improved algorithms and systems. This year, ITI-
CERTH participated again in AVS and ActEV tasks. The following sections will present the employed
algorithms and the evaluation of the runs during the AVS and ActEV tasks, respectively.

1Information Technologies Institute - Centre for Research and Technology Hellas



2 Ad-hoc Video Search

The TRECVID 2024 [17] Ad-hoc Video Search (AVS) task aims to develop a system for retrieving a
ranked list of 1000 video shots for each ad-hoc textual query, ranked from the most relevant to the
least relevant shot for the query. To address this task, we employed a new approach by focusing on
utilizing a diverse set of pre-trained image-text models to improve AVS task performance. Specifically,
we utilized several cross-modal networks in our pipeline, pushing the boundaries of model combination.
Based on previous methodologies, such as those employed in [18], where fixed model weights were a
crucial factor, our approach focuses on the dynamic interaction between these pre-trained models. We
recognized that each model captures unique aspects of the multimodal relationship, but the weightage
of these features varies depending on the input data. Therefore, rather than relying on fixed weights,
we designed and trained a network that learns to weigh each model’s contributions optimally. This
allows our system to adaptively shift focus toward the most effective models for any given input,
enhancing accuracy and performance in real-world scenarios.

2.1 Approach

In our participation in AVS 2024, inspired by [18], we employ a collection of N = 5 cross-modal
network families, each leveraging multiple pre-trained models to achieve robust video-text matching.
Specifically, we use the text-image network families: CLIP [19], BLIP [20], BLIP-2 [21], SLIP [22],
and BEiT3 [23]. For each network family, we apply multiple pre-trained model variants (as listed in
Table 1) to compute feature representations for the D video shots that form our dataset (a shot is
denoted as vd where d = {1, 2, . . . , D}). Likewise, each of the Q queries, sq, is processed through these
models to extract corresponding query features.

Based on these features, for each pre-trained model, we calculate the cosine similarities simi,n(sq, vd)
between all video shots and a query sq, where i denotes a pre-trained model within a model family
(e.g. CLIP, BLIP, etc) and n identifies the network family. To combine the similarities of the models
within the same network family, for a given video shot-query pair (sq, vd), we summarize the similarity
scores as follows: simn(sq, vd) =

∑
i sim

i,n(sq, vd).
In order to combine all these similarities sim(sq, vd) = [sim1(sq, vd), sim

2(sq, vd), . . . , sim
N (sq, vd)]

and to calculate the final similarity y for each query-video shot pair, we designed a trainable neural
network. Instead of averaging these five similarities, our network learns which of them is more of less
useful since each model processes this data differently, highlighting various relationships between visual
and textual features. This network G(·) is composed of two fully connected (FC) layers (comprising 64
and 32 nodes, respectively), followed by ReLU activation functions for non-linearity. This architecture
dynamically evaluates the importance of each model output, effectively creating a weighted fusion
system that can adapt to the complexities of various queries.

The output of the neural network, y, is given as follows:

y = G(sim(sq, vd)) = W (2) · ReLU
(
W (1)sim(sq, vd) + b(1)

)
+ b(2)

where W (1), W (2), b(1) and b(2) are the trainable hyper-parameters.
To further improve the query-video shot similarities we introduced a similarity normalization

procedure across queries utilizing this year’s and older AVS queries as background queries bqj , where
j = {1, 2, . . . , J} and J is the number of the background queries. More specifically, at the retrieval
stage, for a given query-video shot pair (sq, vd) and a specific network family n, besides the similarity
simn(sq, vd) we also calculate the similarities between the shot vd and all the background queries bqj
forming a similarity vector simn

bg(sq, vd) = [simn(sq, vd), sim
n(bq1, vd), . . . , sim

n(bqJ , vd)], and then
we normalize this vector using l2 normalization:

ˆsim
n

bg(sq, vd) =
simn

bg(sq, vd)

∥simn
bg(sq, vd)∥2

resulting in a new revised vector ˆsim
n

bg(sq, vd) = [ ˆsim
n
(sq, vd), ˆsim

n
(bq1, vd), . . . , ˆsim

n
(bqJ , vd)].



Following this normalization across all N network families, the revised similarities that are used
as input to our trained network G(·) are formed as follows:

ˆsim(sq, vd) = [ ˆsim
1
(sq, vd), ˆsim

2
(sq, vd), . . . , ˆsim

N
(sq, vd)]

.

Table 1: The cross-modal network families and their pre-trained model variations utilized in our
AVS 2024 participation.

Network Family Pre-trained Model Network Family Pre-trained Model

BLIP

base coco

BEiT3

base coco (retrieval)
base flickr base flickr30k (retrieval)
large coco large coco (retrieval)
large flickr large flickr30k (retrieval)

BLIP 2
itm coco

CLIP

RN101
itm pretrain RN50

itm pretrain vitL RN50x4

SLIP

base CC12M RN50x16
base CC3M RN50x64

base ViT-B/16
large ViT-B/32
small ViT-L/14

2.2 Submission

Our network G(·) is trained using a combination of four large-scale video captioning datasets: MSR-
VTTT [24], TGIF [25], ActivityNet [26] and Vatex [27]. The V3C2 [28] dataset is utilized to evaluate
the network’s performance. Moreover, we examine the performance of our runs on the V3C2 datasets
for the queries of years 2022-2023. The evaluation measure we use is the mean extended inferred
average precision (MxinfAP).

This year, we submitted three runs for the AVS 2024 main task and three additional runs for the
AVS progress subtask. Overall, we evaluate our methods on 40 ad-hoc queries (20 from the main task
and 20 from the progress subtask). The submitted runs are briefly described below:

• ITI CERTH.24 run 1: Network G(·) is trained to combine text and video similarities from var-
ious cross-modal networks. The input similarities have been normalized, considering the 2022,
2023, and 2024 queries as background queries.

• ITI CERTH.24 run 2: Similar to run 1, but the input similarities have been normalized, con-
sidering only 2024 queries as background queries.

• ITI CERTH.24 run 3: Network G(·) of runs 1 and 2 without the normalization step in the input
similarities.

2.3 Experimental Results

This section presents the results of the Main and Progress tasks. Table 2 presents the official results
of our submissions for the main AVS task, as well as the results of our internal evaluation of AVS
2022 and 2023 queries. The ITI CERTH.24 run 1 and the ITI CERTH.24 run 2 runs, where we utilize
background queries at the similarity normalization step, constantly outperform by a significant margin
the ITI CERTH.24 run 3 where no normalization step was performed. Similar results were observed
in our internal experiments on the AVS 2022 and AVS 2023 queries, as shown in Table 2, where run
3 achieved significantly lower performance than runs 1 and 2.

Similarly, Table 3 summarizes the evaluation results of our runs for the Progress AVS task on
sets A and B. The ITI CERTH.24 run 2, where only the AVS 2024 queries were used as background



Table 2: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the 2022,
2023 and 2024 fully automatic AVS tasks.

Run id: 2022 2023 2024
ITI CERTH.24 run 1 0.278 0.335 0.360
ITI CERTH.24 run 2 0.279 0.328 0.353
ITI CERTH.24 run 3 0.246 0.269 0.273

Table 3: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the fully
automatic AVS Progress task.

Run id: Progress Set A Progress Set B
ITI CERTH.24 run 1 0.267 0.358
ITI CERTH.24 run 2 0.268 0.361
ITI CERTH.24 run 3 0.235 0.265

queries in the similarity normalization step, outperforms by a small margin the ITI CERTH.24 run 1,
where we utilize queries from three years. However, both runs outperform the ITI CERTH.24 run 3,
where no normalization step was applied to the similarities.

The results from the above tables highlight the merit of the normalization step, which consistently
improves performance regardless of the query list used.

Figure 1 shows the performance of our submitted runs in the AVS 2024 main task compared to all
submitted runs from the other teams. Moreover, Figures 2 and 3 show the performance and evolution
of all submitted runs in the AVS progress task from 2022 to 2024. Both figures demonstrate that our
methods have consistently improved each year and achieved competitive results.

3 Activities in Extended Video

In activity recognition systems, multimedia data captured from cameras in diverse indoor and outdoor
environments is analyzed to identify activities of depicted objects. This field has gained significant
attention due to its practical applications in areas such as surveillance and traffic monitoring. How-
ever, effective activity recognition in these systems faces several challenges: video resources are often
untrimmed, multiple activities can occur simultaneously, and interactions between objects can be
complex. These factors, along with the need for real-time analysis, make manual processing and
interpretation impractical and highlight the importance of automated methods.

Towards this goal, the Activities in Extended Videos (ActEV) challenge promotes the research and
development of real-time activity detection methods in surveillance scenarios. In our approach, the
task of activity recognition is addressed through a sequence of distinct steps, beginning with object
detection and tracking followed by the classification of the activities. We utilized the YOLOv8 model
[29] in conjunction with the BoT-SORT [30] tracking algorithm, to detect and track key Objects
of Interest (OoI), including persons, vehicles, bags, laptops, and cellphones. For activity classifica-
tion, we segmented activities into three categories: Person-Related (PR), Vehicle-Related (VR), and
Person-Vehicle-Related (PVR) activities. PR activities involve persons not overlapping with vehicles,
including also bags, laptops, and cellphones, and are classified using a rule-based method customized
to each activity type. PVR and VR activities, involving overlapping persons and vehicles as well as
standalone vehicles, are classified with a 3D-ResNet-based classifier [31]. The MEVA dataset [32] was
used to train and validate the activity classifier using the official Kitware annotations1. All 20 activity
classes are depicted in Table 4.

1https://gitlab.kitware.com/meva/meva-data-repo/-/tree/master/annotation/DIVA-phase-2/MEVA



Figure 1: AVS 2024 ranking of all submitted runs regarding the Main task, according to MXinfAP.
Red bars indicate our submitted runs.

Figure 2: AVS 2024 ranking of all submitted runs regarding Set A of the Progress task, according to
MXinfAP. Red, orange, and pink bars indicate our submitted runs for the years 2024, 2023, and

2022 respectively.

3.1 Approach

In this work, the task of activity recognition and localization is addressed across a set of videos
V = {vi} to identify a set of activities A = {ai} for all the Objects of Interest. Each activity ai is
described by a type ti according to a set of predefined classes and a temporal location l = (tstart, tend)
that indicates the start and end of it within a given video.

Considering the challenges of detecting activities in surveillance videos, this work focuses on ef-
fectively detecting and tracking the OoI, and identifying their activities. Building on our previous
submissions [13, 14, 15] in the activity detection task of the ActEV challenge, this year we have
introduced three significant enhancements: (1) the adoption of an updated version of YOLO se-
ries, specifically the YOLOv8 [29] model, for improved detection accuracy, (2) the integration of the
BoT-SORT [30] algorithm for enhanced tracking performance, and (3) the implementation of a new



Figure 3: AVS 2024 ranking of all submitted runs regarding Set B of the Progress task, according to
MXinfAP. Red, orange, and pink bars indicate our submitted runs for the years 2024, 2023, and

2022 respectively.

Table 4: Activity classes in ActEV challenge 2024, divided into Person-Related (PR),
Vehicle-Related (VR) and Person-Vehicle-Related (PVR) classes.

Activity Classes
PR Classes VR & PVR Classes

person reads document person closes vehicle door
person enters scene through structure person enters vehicle
person exits scene through structure person exits vehicle

person stands up person opens vehicle door
person sits down vehicle starts

person talks to person vehicle stops
person picks up object vehicle turns left
person puts down object vehicle turns right
person opens facility door
person texts on phone

person interacts with laptop
person transfers object

rule-based classification method is introduced for PR activities, alongside our established classifier for
VR and PVR classes.

3.1.1 Object Detection and Tracking

The first step involves object detection and tracking, conducted frame-by-frame across each video to
identify and track all objects for subsequent activity analysis. The largest and most accurate model
of the YOLOv8 [29] series, YOLOv8x, is incorporated as the object detector in our pipeline, offering
cutting-edge performance. For the experiments, we employed a pre-trained YOLOv8x model, which
was trained on the Microsoft Common Objects in Context (MS COCO) [33] dataset, to detect objects
classified into the following categories: ”person”, ”vehicle” (depicting the classes ”car”, ”motorcycle”,
”bus”, and ”truck”), ”laptop”, ”cellphone” and ”bags” (representing the classes ”backpack”, ”hand-
bag” and ”suitcase”). YOLOV8x achieves 53.9% Average Precision (AP) on MS COCO, running at
274 FPS on an A100 TensorRT GPU.

Apart from object detection, Ultralytics repository 2 also provides advanced tracking algorithms

2https://docs.ultralytics.com/tasks/



that not only identify the location and class of objects within a frame but also maintains a unique ID
for each detected object as the video progresses. BoT-SORT algorithm [30] has been utilized as our
tracker, which addresses the limitations of prior SORT-like trackers, such as Simple Online Realtime
Tracking (SORT) [34], Deep Simple Online Realtime Tracking (DeepSort) [35] and Joint Detection and
Embedding (JDE) [36] by incorporating features from the novel ByteTrack [37] algorithm. BoT-SORT
leverages both motion and appearance information, incorporates camera-motion compensation, and
employs an enhanced Kalman filter state vector for improved box localization and robust detection-
to-tracklet associations. The output of this process is a set of tracked objects, O = {oi}, where
each object oi is defined by its bounding boxes across all video frames in which it was tracked,
oi = {(xleft, ytop, width, height)t1 , ...}.

Figure 4: Bounding box height of person objects across frames. On the top is depicted an example
of a person standing up and on the bottom when a person sitting down. The black dashed line
highlights the change point of the height values; indicating the beginning of the corresponding

activity.

3.1.2 PR Activity Recognition

For PR activities, we propose a rule-based classification method leveraging the distinct characteristics
of each activity:

• Person-Laptop and Person-Phone Interactions: The overlap of a person’s bounding box with a
laptop serves as an indicator of the activity person interacts with laptop. However, to minimize
the false positives, such as when a person in the scene passes by the laptop, we add a duration
threshold for the overlap of 150 frames. Only if the overlap persists beyond this threshold we label
the activity as person interacts with laptop. The same logic applies to person texts on phone,
though here the overlap is nearly 100% as the person holds the phone, resulting in close bounding
box alignment.



• Sitting and Standing Actions: The decrease in a person’s bounding box height serves as a
key indicator of the activity person sits down. However, temporary height reductions, such as
when a person overlaps with another object, can produce similar results. The key difference
lies in the duration of the change. When a person sits down, the decrease in bounding box
height is sustained, whereas during a temporary occlusion, the height decreases but quickly
recovers as the person reappears from the overlapped object. A similar pattern is observed in
activity person stands up, where in that situation the height increases. The above observation
is illustrated in Figure 4.

• Person-to-Person Interactions: To identify closely related persons that can be involved in the
activity person talks to person, the distance between the centres of the corresponding bounding
boxes is calculated. Based on distances observed for this activity in the MEVA dataset [32]
training and validation sets, as shown in Figure 5, we establish the mean distance threshold of
75 pixels. Additionally, to avoid including people who are just passing by each other briefly, we
introduce a duration restriction. Specifically, if the distance of the persons remains below 75
pixels for more than 150 frames, we classify the activity as person talks to person.

Figure 5: Distribution of distances between people in activity person talks to person of MEVA
dataset for both training and validation set.

• Object Transfer Activities: Identifying overlaps between bags and persons could be an indica-
tor for the activity persons transfers object, after filtering out static bags among frames. Fur-
thermore, if the bag’s y-coordinate increases during the overlap, the activity is classified as
person picks up object. On the other side, if the bag’s y-coordinate decreases, the activity is
classified as person puts down object.

3.1.3 VR and PVR Activities Recognition

The final step of our pipeline is the activity recognition for VR and PVR activities. As a pre-processing
step, we remove all the static vehicles from the VR pool, as ActEV challenge activities do not involve



stationary vehicles. For PVR pool, where a person’s bounding box overlaps with that of a vehicle,
we compute the union of the spatial data before feeding it into the deep learning model. The 3D-
ResNet [31] is employed to label the tracked objects, a deep learning architecture that effectively
handles spatiotemporal data with 3D convolutional layers. Its architecture consists of four sequential
bottleneck blocks, where each block includes three 3D-convolution layers (with varying kernel sizes),
along with batch normalization, and ReLU activation layers. For this challenge, we initialized the
model with pre-trained weights from the Kinetics [38] dataset and then fine-tuned it in a multi-label
manner using the MEVA dataset. The model assigns scored labels to every batch of 16 frames of a
detected object’s trajectory. To produce more accurate activity proposals and reduce the number of
false alarms, a threshold Thight has been established, with activities scoring below this value are less
likely to occur.

Figure 6: Performance of our system M4D ActEV 24 B in each activity for Activity and Object
Detection (AOD) and Activity Detection (AD).

3.2 Submission

In this section, we present our submitted system, as depicted in Figure 6 and in Table 5 for both
Activity and Object Detection (AOD) and Activity Detection (AD):

• M4D ActEV 24 B : The system was deployed using YOLOv8x [29] for object detection and the
BoT-SORT [30] algorithm for tracking, splitting the classes according to Table 4. Our rule-
based method was employed for PR activities. The MEVA dataset [32] was utilized to train and
validate the activity classifier for VR and PVR activities. Refinement was achieved by adjusting
the Thight threshold for the final scores to 75%.

3.3 Experimental Results

In this section, further discussion about the performance of the submitted system is reported. Table
5 presents the results of our system as described in the Submissions section, on both validation and



Table 5: The evaluation results of our M4DSYS ACTEV 24 B for MEVA validation set and ActEV
challenge test set for Activity and Object Detection (AOD) and Activity Detection (AD).

Validation Set Test Set
AOD AD AOD AD

p miss@0.1rfa 0.9833 0.9697 0.9838 0.9643
nAUDC@0.2rfa 0.9779 0.9640 0.9781 0.9588
Correct Detections 650 1310 - -
False Detections 60899 60239 - -
Missed Detections 31355 30695 - -
Activities 61549 61549 21118 21118

test sets. The validation set results were generated from evaluations that ran locally, while the test
set results gained from the public leaderboard3 of the ActEV challenge. Both sets were evaluated
using the ”SRL AOD V1” and ”SRL AD V1” scoring protocols for AOD and AD, respectively. To
better assess the effectiveness of our new rule-based method for PR activities, Figure 6 illustrates the
system’s performance across different activities. Notably, our system achieved high accuracy in the
person interacts with laptop activity, with scores of 0.76 and 0.64 for AOD and AD, respectively, for
the p miss@0.1rfa metric. Additionally, strong performance can be observed in other activities such
as person texts on phone, person sits down, and person stands up.

The success of the rule-based classification method, heavily relies on the object detection of
YOLOv8 model. With this in mind, in some cases, misclassifications are observed, such as a detecting
newspapers as laptops, or failures to detect objects involved in activities of interest, such as doors (per-
son opens facility door, person enters scene through structure, person exits scene through structure),
documents (person reads document), or items like cups, money or other objects involved in the activi-
ties person picks up object, person puts down object. As a result, while the rule-based method provides
a reasonable foundation, it still leads to many false detections and the exclusion of certain activities
from our analysis. Another factor impacting performance is camera proximity, where people’s appear-
ance relative to the camera affects the spatial information of tracked objects. Future iterations would
benefit from calibrating thresholds based on camera type to enhance consistency and reliability.

In VR and PVR activity recognition, the exclusion of static cars has reduced false positives, but
many vehicles that follow consistent paths without notable actions still contribute to false detections.
As the classifier assigns a label to each 16-frame batch, it can misinterpret stable vehicle trajectories
as activity, creating false positives. Additionally, activity labels are currently applied to an entire
vehicle trajectory, while annotations may only apply to specific segments (e.g., a vehicle turns left
might occur briefly). Processing full trajectories rather than segments can lead to mislabeling and
lower detection accuracy.

While our submission ranked last in ActEV 2024, an overall review of all submissions places
this year’s entry in 9th position out of 16-a significant improvement over our previous last-place
finish in 2022 (Figure 7). This progress, along with strong performance in certain activities and the
implementation of new refinement rules, reinforces our confidence for future enhancements and better
results.

4 Conclusions

In this paper, the evaluation of ITI-CERTH during the TRECVID 2024 challenge [17] is reported.
ITI-CERTH this year participated by developing new techniques and algorithms in the context of AVS
and ActEV tasks. In the AVS task, we leveraged several image-text cross-modal network families to
enhance our system’s performance and we trained a neural network that learns the optimal weighting
for each model’s contribution, allowing the system to highlight the most informative features for each

3https://actev.nist.gov/SRL#tab leaderboard



Figure 7: All time submissions for ActEV SRL Challenge based on the primary metric of AOD,
Pmiss@0.1RFA. M4D team and dev-niu metric is not reported.

query. Additionally, a similarity normalization step refines query-video shot similarities, improving
overall performance.

Regarding the ActEV task, a three-step pipeline was deployed in order to effectively detect objects,
track them and recognize their activities in a multi-label manner enriched by rule-based classification
filtering capabilities. The classification of the detected activities is performed spatio-temporally using
two separate classifiers; one for the person-related activities and one for the vehicle-related and person-
vehicle interaction activities. Though the results are not expected, some aspects of the process seem
promising.
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Trecvid 2024 - evaluating video search, captioning, and activity recognition. In Proceedings of
TRECVID 2024. NIST, USA, 2024.

[18] Jiangshan He, Ruizhe Li, Jiahao Guo, Hong Zhang, Mingxi Li, Zhengqian Wu, Zhongyuan Wang,
Bo Du, and Chao Liang. WHU-NERCMS AT TRECVID 2023: AD-HOC VEDIO SEARCH
(AVS) AND DEEP VIDEO UNDERSTANDING (DVU) TASKS. In Proceedings of TRECVID
2023. NIST, USA, 2023.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, , et al. Learning transferable visual models from natural language
supervision. In Proc. of the 38th Int. Conf. on Machine Learning (ICML), 2021.

[20] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference
on machine learning, pages 12888–12900. PMLR, 2022.

[21] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730–19742. PMLR, 2023.



[22] Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision
meets language-image pre-training. In European conference on computer vision, pages 529–544.
Springer, 2022.

[23] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, and Furu Wei. Image as a foreign
language: BEiT pretraining for vision and vision-language tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

[24] J. Xu, T. Mei, et al. MSR-VTT: A large video description dataset for bridging video and language.
In Proc. of IEEE CVPR 2016, pages 5288–5296, 2016.

[25] Y. Li, Y. Song, L. Cao, J. Tetreault, et al. TGIF: A new dataset and benchmark on animated
gif description. In Proc. of IEEE CVPR 2016, 2016.

[26] F. Caba Heilbron et al. ActivityNet: A large-scale video benchmark for human activity under-
standing. In Proc. of IEEE CVPR 2015, pages 961–970, 2015.

[27] X. Wang et al. Vatex: A large-scale, high-quality multilingual dataset for video-and-language
research. In Proc. of IEEE/CVF ICCV 2019, pages 4581–4591, 2019.

[28] L. Rossetto, H. Schuldt, G. Awad, and A. A. Butt. V3C–a research video collection. In Proc. of
MMM 2019, pages 349–360. Springer, 2019.

[29] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023.

[30] Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. Bot-sort: Robust associations multi-pedestrian
tracking. arXiv preprint arXiv:2206.14651, 2022.

[31] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the
history of 2d cnns and imagenet? In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 6546–6555, 2018.

[32] Kellie Corona, Katie Osterdahl, Roderic Collins, and Anthony Hoogs. Meva: A large-scale
multiview, multimodal video dataset for activity detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 1060–1068, 2021.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[34] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and
realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP). IEEE,
September 2016.

[35] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a
deep association metric, 2017.

[36] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards real-time
multi-object tracking, 2020.

[37] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu
Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection box,
2022.

[38] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human
action video dataset. arXiv preprint arXiv:1705.06950, 2017.


	Introduction
	Ad-hoc Video Search
	Approach
	Submission
	Experimental Results

	Activities in Extended Video
	Approach
	Object Detection and Tracking
	PR Activity Recognition
	VR and PVR Activities Recognition

	Submission
	Experimental Results

	Conclusions
	Acknowledgements

