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ABSTRACT
In this work, we describe a new method for unsupervised video
summarization. To overcome limitations of existing unsupervised
video summarization approaches, that relate to the unstable train-
ing of Generator-Discriminator architectures, the use of RNNs for
modeling long-range frames’ dependencies and the ability to paral-
lelize the training process of RNN-based network architectures, the
developed method relies solely on the use of a self-attention mecha-
nism to estimate the importance of video frames. Instead of simply
modeling the frames’ dependencies based on global attention, our
method integrates a concentrated attention mechanism that is able
to focus on non-overlapping blocks in the main diagonal of the at-
tention matrix, and to enrich the existing information by extracting
and exploiting knowledge about the uniqueness and diversity of the
associated frames of the video. In this way, our method makes bet-
ter estimates about the significance of different parts of the video,
and drastically reduces the number of learnable parameters. Exper-
imental evaluations using two benchmarking datasets (SumMe and
TVSum) show the competitiveness of the proposed method against
other state-of-the-art unsupervised summarization approaches, and
demonstrate its ability to produce video summaries that are very
close to the human preferences. An ablation study that focuses
on the introduced components, namely the use of concentrated
attention in combination with attention-based estimates about the
frames’ uniqueness and diversity, shows their relative contributions
to the overall summarization performance.

CCS CONCEPTS
• Computing methodologies → Video summarization; Unsu-
pervised learning.
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1 INTRODUCTION
Video summarization aims to generate a complete and concise
synopsis by selecting the most important and informative parts of
the full-length video. Current practice in the media industry for
the production of a video summary requires an editor to watch
the entire content and decide about the parts of it that should be
included in the summary. This time-consuming and cumbersome
task can be significantly accelerated by technologies for automated
video summarization. Hence, such technologies are nowadays of
high demand by media organizations, as they can drastically reduce
the needed resources for video summary production in terms of
both time and human effort.

Several approaches have been proposed to automate video sum-
marization over the last couple of decades, more recently focusing
on deep-learning-based methods. This is driven by the successful
application of deep network architectures on other video analysis
tasks, such as image classification. Based on the reported summa-
rization performance in the relevant works, deep-learning-based
video summarization methods represent the current state of the
art in the field. A recent study of the literature on deep-learning-
based video summarization [4] showed that most works try to learn
the summarization task in a supervised manner with the help of
ground-truth annotations, but there is also a noticeable number of
unsupervised approaches that can be trained without the use of
ground-truth data; thus eliminating the need for laborious and time-
consuming data annotation tasks. The competitive performance
of some of these unsupervised approaches, combined with obser-
vations in [4] about the limited amount of available ground-truth
data and the heavily-demanding procedures that are required for
obtaining such data, highlight the potential of unsupervised video
summarization methods.
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Driven by the remarks discussed above, we worked towards
the development of an unsupervised video summarization method.
A study of the relevant literature showed that most existing ap-
proaches (e.g., [2, 3, 5, 11–13, 19, 23, 29]) utilize Generator - Discrim-
inator architectures and try to learn how to build a representative
summary based on the intuition that such a summary would allow
a good reconstruction of the original video. Nevertheless, these
methods can suffer from the unstable training of Generative Adver-
sarial Networks (GANs) [34], while their building blocks in most
cases are different types of RNNs (mainly LSTMs), which show
limited memorization capacity [17]. As an alternative, some works
(e.g., [8, 21, 30, 33, 34]) design tailored reward functions that target
specific desired characteristics of a good video summary (such as
including representative and diverse content), and train a network
architecture via reinforcement learning. However, the performance
of most of these methods is poor, and they also carry the limitations
of using RNNs to model long-range frames’ dependencies [17].

To overcome the above discussed drawbacks of existing unsu-
pervised video summarization approaches, we propose a novel
approach, called CA-SUM, that relies on the use of a self-attention
mechanism. This mechanism involves only matrix multiplication
operations that are highly parallelizable, takes into account the
entire frame sequence, and can be easily trained in a single for-
ward and backward pass. Moreover, the developed self-attention
mechanism is able to concentrate on specific parts of the attention
matrix and make better estimates about their significance (this term
is used in the sequel as an alternative to the term “attention”) by
incorporating knowledge about the uniqueness and diversity of the
relevant frames of the video. In our method, uniqueness and diver-
sity are somewhat similar notions, where uniqueness is measured
by an entropy-based evaluation that involves attention estimates
for the entire frame sequence, whereas diversity is computed by
assessing the cosine similarity among selected pairs of frames. Fi-
nally, our concentrated attention mechanism reduces the number
of learnable parameters, and allows the network architecture to be
trained efficiently using a simple loss function.

The proposed CA-SUMmethod follows a completely different ap-
proach for learning video summarization, compared to the existing
unsupervisedmethods. It is most closely related to the unsupervised
variant of a recently published supervised video summarization
algorithm [17], which also relies on the use of a self-attention mech-
anism that estimates the frames’ diversity. However, differently
from [17], our method: i) applies a completely different approach
for measuring the frames’ diversity, ii) extracts and utilizes informa-
tion also about the frames’ uniqueness, iii) and can be trained using
a simple loss function that relates to the length of the generated
video summary. Our contributions are the following:

• We introduce the use of a concentrated attention mechanism
for unsupervised video summarization.

• We propose an approach for evaluating the frames’ unique-
ness and diversity based on the computed attention values.

• We suggest a method for exploiting the extracted informa-
tion about the frames’ uniqueness and diversity, and produce
a block diagonal sparse attention matrix that contains bet-
ter estimates about the significance of different parts of the
video, and reduces the number of learnable parameters.

2 RELATEDWORK
Several attempts have been made to automate video summarization.
The current state of the art is represented by methods relying on
the learning capacity of deep network architectures. For the sake of
space, in this section we present in brief the relevant literature on
unsupervised video summarization, as the relevant approaches are
most closely related to the proposed method. For a more compre-
hensive survey of the bibliography on deep-learning-based video
summarization, interested readers are referred to [4].

The complete absence of any guidance (in the form of ground-
truth data) for learning video summarization, led researchers in
seeking the most important characteristics of a good video sum-
mary. To this direction, most existing unsupervised approaches aim
to learn how to build summaries that are highly representative of
the video content. Based on the intuition that a representative sum-
mary ought to assist the viewer to infer the original video content,
most methods rely on the use of Generator-Discriminator archi-
tectures along with adversarial learning mechanisms that force
the summarization component (which is usually a part of the Gen-
erator) to build a summary that allows a good reconstruction of
the original video. In a first attempt in this direction, Mahasseni
et al. [19] combined an LSTM-based key-frame selector with a
Variational Auto-Encoder (VAE) and a trainable Discriminator, and
learned video summarization via an adversarial learning process
that tries to minimize the distance between the original video and
the summary-based reconstructed version of it. Building on the
network architecture of [19], Apostolidis et al. proposed a step-
wise, label-based approach for training the adversarial part of the
network, that leads to improved summarization performance [5].
Further advancement of this performance was achieved in subse-
quent works of Apostolidis et al. [2, 3]. In [2] the Variational Auto-
Encoder was replaced by a deterministic Attention Auto-Encoder
in order to learn an attention-driven reconstruction of the orig-
inal video. In [3] an Actor-Critic (AC) model was embedded in
the network architecture of [5] and trained based on a workflow
that uses the Discriminator’s feedback as a reward and allows the
AC model to discover a space of actions and automatically learn
a value function (Critic) and a policy for key-fragment selection
(Actor). Jung et al. also built on the network architecture of [19]
and proposed an extension of it by introducing a chunk and stride
network (CSNet) and a tailored difference attention mechanism for
assessing the frames’ dependence at different temporal granularities
[12]. In their following work, Jung et al. [13] replaced the CSNet-
based mechanism of [12] for estimating frames’ importance, by a
self-attention mechanism that is combined with an approach for
modeling the relative position between frames. On a similar basis,
He et al. [11] integrated a self-attention mechanism in both parts
of a Generator-Discriminator architecture. To enhance the frames’
importance estimation process, this method uses a feature selector
that forces the summarization component of the network to focus
on the most important segments of the frame sequence, and models
long-range frames’ dependencies using multi-head self-attention
mechanisms. In another recent work, Wu et al. [29] suggested that
taking into account only the representativeness of the video sum-
mary is not sufficient for learning the summarization task, as a
good summary should also contain the high priority events/entities
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Figure 1: The analysis pipeline of the proposed CA-SUMmethod. The lower part illustrates the processing steps within the
attention mechanism.

of the visual content. Based on this observation, Wu et al. [29]
extended a Generator-Discriminator architecture by introducing
an Adversarial Spatio-Temporal network that constructs the rela-
tionship among entities, using this information while estimating
frames’ importance, and improving the stability of the Discrimina-
tor’s training using the earth moving distance of the Wasserstein
GAN [6]. On a slightly different basis, Rochan et al. [23] used a
Generator-Discriminator architecture to learn video summarization
from unpaired data. The generative part is composed of a Fully-
Convolutional Sequence Network (FCSN) encoder-decoder, while
the discriminative part contains only the decoding part of the FCSN.
The goal is to learn a mapping function of a raw video to a human-
like summary, such that the distribution of the generated summary
is similar to the distribution of human-created summaries. Finally,
Kanafani et al. [14] focused on the generative part of the network
architecture from [12] and investigated the impact of using multiple
representations of the visual content while estimating the frames’
importance. Different approaches were examined for fusing the
computed representations of the visual content at different steps of
the analysis and for different temporal granularities.

Taking into account additional desired characteristics for a video
summary (besides representativeness, that is targeted by the meth-
ods reported in the previous paragraph), a few unsupervised ap-
proaches define different hand-crafted reward functions that quan-
tify the existence of desired characteristics in the generated sum-
mary, and train a network architecture for video summarization
based on reinforcement learning. In this context, Zhou et al. [34]

formulated video summarization as a sequential decision-making
process and trained a simple LSTM-based network architecture us-
ing a pair of diversity and representativeness rewards. The former
computes the dissimilarity among the selected key-frames and the
latter measures the distance (i.e., the visual resemblance) of the
selected key-frames from the remaining video frames. Gonuguntla
et al. [8] utilized Temporal Segment Networks [28] to extract spa-
tial and temporal information about the video frames, and trained
a video summarization architecture based on a reward function
that evaluates the preservation of the video’s main spatiotemporal
patterns in the produced summary. Zhao et al. [33] described a
mechanism that performs both video summarization and recon-
struction. Video reconstruction aims to assess the extent to which
the summary allows the viewer to infer the original video, and
video summarization is learned based on the output of the video
reconstruction process and the output of trained models that evalu-
ate the representativeness and diversity of the generated summary.
In another recent work, Yaliniz et al. [30] used Independently Re-
current Neural Networks (IndRNNs) [18] to model the temporal
dependence of video frames, and learned summarization by us-
ing rewards associated with the representativeness, diversity and
uniformity (i.e., the temporal coherence) of the video summary.
Finally, Phaphuangwittayakul et al. [21] presented a variation of
the network architecture from [34], which estimates the frames’
importance by combining the created representations for the video
frames at the output of a bi-directional RNN and a self-attention
mechanism.
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Besides the unsupervised video summarization approaches dis-
cussed above, a few variations of supervised methods that can be
trained without using ground-truth annotations have appeared
in the literature [17, 24, 32]. These variations are also taken into
account in the performance comparisons reported in Section 4.

3 PROPOSED APPROACH
The basis of our developments was the network architecture of
VASNet [7]. The heart of this supervised video summarization
method is a soft self-attention mechanism that takes into account
the entire frame sequence and models the frames’ dependencies
according to their pair-wise similarities in a learned latent space.
The output of this mechanism is forwarded to a two-layer, fully
connected network that produces estimates about each frame’s
importance. These estimates are compared with ground-truth anno-
tations about the frames’ importance, and the computed loss value
guides the supervised training of the architecture.

To train this architecture in a fully-unsupervised manner, we
developed a new method that allows the attention mechanism to:
i) concentrate on specific parts of the attention matrix, that corre-
spond to different non-overlapping video fragments of fixed length,
ii) make better estimates about the significance of each of these
parts, by extracting and exploiting information about the unique-
ness and diversity of the associated video frames, iii) produce a
block diagonal sparse attention matrix, thus significantly reducing
the number of learnable parameters, and iv) learn the video summa-
rization task via a simple loss function that relates to the length of
the generated summary. In the following, we present the processing
pipeline of the proposed method (Fig. 1), from video representation
to frames’ importance estimation. This pipeline is the same during
both training and inference. Regarding the used notation: capital
bold letters denote matrices, small bold letters denote vectors and
non-bold letters (either capital or small) denote scalars.

Given a video of 𝑇 frames, the CA-SUM method initially pro-
duces a set of deep feature representations (𝑿 = {𝒙𝒕 }𝑇𝑡=1) of size 𝐷
(𝒙𝒕 = {𝑥𝑡,𝑟 }𝐷𝑟=1) using a pretrained CNN model. These representa-
tions form the input of the attention mechanism and are utilized
also via a residual skip connection to facilitate back-propagation
and assist the model’s convergence. As illustrated in the lower part
of Fig. 1, the attention mechanism passes the set of frame feature
vectors (𝑿 = {𝒙𝒕 }𝑇𝑡=1) through three different linear layers and
forms the Query (𝑸 = {𝒒𝒕 }𝑇𝑡=1), Key (𝑲 = {𝒌𝒕 }𝑇𝑡=1) and Value
(𝑽 = {𝒗𝒕 }𝑇𝑡=1) matrices of the training process. The Query and Key
matrices participate in a matrix multiplication process that is fol-
lowed by a softmax layer, and formulate the values of the attention
matrix (𝑨 = {𝑎𝑖, 𝑗 }𝑇𝑖,𝑗=1). The computed attention values are then
utilized by the concentrated attention mechanism. This mechanism
focuses on non-overlapping blocks of size𝑀 that are in the main
diagonal of the attention matrix, and aims to enrich the existing
information in each of these blocks by integrating knowledge about
the uniqueness and diversity of the associated frames of the video.
The different processing steps of the concentrated attention mech-
anism, are presented in Alg. 1. The outputs of this mechanism are:
i) a block diagonal sparse attention matrix that concentrates the
information about the significance of different consecutive and
non-overlapping parts of the video in a narrow area around its

Algorithm 1 The processing steps of the concentrated attention
mechanism.
Notation: 𝑇 is the number of video frames, 𝑁 is the number of

blocks, 𝑀 is the block size, 𝑨 is the attention matrix, 𝑩 is
the block diagonal sparse attention matrix, 𝑢𝑡 and 𝑑𝑡 are the
attentive uniqueness and diversity values for the 𝑡𝑡ℎ frame
respectively.

Input: The attention matrix 𝑨.
Output: The block diagonal sparse attention matrix 𝑩, and the

computed values about the attentive uniqueness (𝑢𝑡 ) and diver-
sity (𝑑𝑡 ) for each video frame (𝑡 ∈ [1,𝑇 ]).
"""
Estimate the attentive uniqueness of each video frame by com-
puting the entropy of each row of the attention matrix 𝑨, using
the following formula: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝒂𝒊) = −∑𝑇

𝑡=1 𝑎𝑖,𝑡 · 𝑙𝑜𝑔(𝑎𝑖,𝑡 )
"""

1: for 𝑖 = 1 → 𝑇 do
2: 𝑒𝑖 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝒂𝒊)
3: 𝒖 = | |𝒆 | |1

"""
For each block of the block diagonal sparse attention matrix,
estimate the attentive diversity of each frame of the block by com-
puting the mean of its attention-based weighted dissimilarities
(Dis) from the frames that lie outside the block.
"""

4: for 𝑘 = 0 → 𝑁 − 1 do
5: for 𝑖 = 𝑀𝑘 + 1 → 𝑀 (𝑘 + 1) do
6: 𝐼𝑁𝐷 = [𝑀𝑘 + 1, 𝑀 (𝑘 + 1)] # indices inside block
7: for 𝑙 = 1 → 𝑇 & (𝑙 ∉ 𝐼𝑁𝐷) do
8: 𝐷𝑖𝑠 (𝑖, 𝑙) = 1 − 𝒙𝒊 ·𝒙𝑻

𝒍
| |𝒙𝒊 | |2 · | |𝒙𝒍 | |2

# cosine distance

9: 𝑑𝑖 =
1∑

𝑙 𝐷𝑖𝑠 (𝑖,𝑙)
∑
𝑙 (𝐷𝑖𝑠 (𝑖, 𝑙) · 𝑎𝑖,𝑙 )

"""
Compute the block diagonal sparse attention matrix 𝑩
"""

10: 𝑩 = 𝑧𝑒𝑟𝑜𝑠 (𝑇,𝑇 ) # create a 𝑇𝑥𝑇 zero matrix
11: for 𝑘 = 0 → 𝑁 − 1 do
12: for 𝑗 = 𝑀𝑘 + 1 → 𝑀 (𝑘 + 1) do
13: for 𝑖 = 𝑀𝑘 + 1 → 𝑀 (𝑘 + 1) do
14: 𝑏𝑖, 𝑗 = 𝑎𝑖, 𝑗 + 𝑑 𝑗

main diagonal, and ii) a pair of values for each frame, that represent
its attentive uniqueness (𝑢𝑡 ∈ R+ and 𝑡 ∈ [1,𝑇 ]) and diversity
(𝑑𝑡 ∈ R+ and 𝑡 ∈ [1,𝑇 ]) from the video frames outside the block
of interest. The adopted terminology for these two values relates
to the fact that the computed attention values (𝑨 = {𝑎𝑖, 𝑗 }𝑇𝑖,𝑗=1)
are taken into account for estimating the frames’ uniqueness and
diversity. The formulas for calculating these values are described
in Alg. 1. Each pair of attentive uniqueness and diversity values is
concatenated at the end of the corresponding feature vector that is
created after a matrix multiplication process involving the block
diagonal sparse attention matrix (𝑩 = {𝑏𝑖, 𝑗 }𝑇𝑖,𝑗=1) and the Value ma-
trix (𝑽 = {𝒗𝒕 }𝑇𝑡=1). The generated feature vectors (𝑪 = {𝒄𝒕 }𝑇𝑡=1) of
size 𝐷 + 2 (𝒄𝒕 = {𝑐𝑡,𝑟 }𝐷+2

𝑟=1 ) pass through a linear layer that reduces
their dimensionality to 𝐷 . The generated feature vectors at the
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output of the attention mechanism (𝒁 = {𝒛𝒕 }𝑇𝑡=1) are then added
to the original feature vectors (𝑿 = {𝒙𝒕 }𝑇𝑡=1) via a residual skip
connection (this addition is represented by the ⊕ symbol in the
upper part of Fig. 1). The result of this operation (𝑾 = {𝒘𝒕 }𝑇𝑡=1) is
forwarded to a dropout layer that is followed by a normalization
layer. The produced representations are given as input to the Re-
gressor Network, which is the same with the one in [7]. Finally, the
Regressor produces a set of frame-level scores (𝒚 = {𝑦𝑡 }𝑇𝑡=1 with
𝑦𝑡 ∈ R and 𝑦𝑡 ∈ (0, 1)) that indicate the frames’ importance.

Given the output of the aforementioned processing pipeline, at
training time, we compute a length regularization loss:

𝐿𝑟𝑒𝑔 =

����� 1𝑇 𝑇∑︁
𝑡=1

𝑦𝑡 − 𝜎

����� , (1)

where 𝜎 is the summary length regularization factor, a tunable
hyper-parameter of our method (𝜎 was introduced in [19] and is
used in several subsequent works, e.g., [3, 17, 21, 34]). The computed
training loss is then back-propagated to compute the gradients and
update all the different parts of the architecture.

At inference time, the estimated importance scores are used
to select the key-fragments of the video and form the video sum-
mary. For this, given a temporal segmentation of the video into
its building blocks (obtained e.g., using the KTS algorithm [22]),
fragment-level importance is calculated by averaging the scores
of the frames within each fragment. Finally, requiring that the
summary does not exceed 15% of the video duration (which is a
common evaluation-protocol setting in the relevant literature), we
form the video summary by solving the Knapsack problem, simi-
larly to [2, 3, 5, 8, 11–14, 17, 19, 21, 23, 29, 30, 32–34].

4 EXPERIMENTS
4.1 Datasets and evaluation approach
Datasets. The performance of the proposed method is evaluated on
two benchmarking datasets. The SumMe dataset [10] includes 25
videos (1-6min. duration) with diverse video contents (e.g., covering
holidays, events and sports), captured from both first-person and
third-person view. Each video has been annotated by 15 to 18 users
in the form of key-fragments, and thus is associated to multiple user
summaries of varying length (5-15% of the initial video duration).
The TVSum dataset [26] contains 50 videos (1-11 min. duration)
from 10 categories of the TRECVid MED task [25] (5 videos per
category). Each video has been annotated by 20 users in the form
of frame-level importance scores, ranging from 1 (not important)
to 5 (very important).

EvaluationApproach.Our assessments are based on two differ-
ent evaluation approaches. The first approach (proposed in [31] and
adopted by the majority of the state of the art video summarization
methods) estimates the similarity between a machine-generated
(M) and a user-defined summary (U) by computing their overlap
using the F-Score (as percentage), where (P)recision and (R)ecall
measure the temporal overlap (∩) between the summaries at the
frame-level (| | ∗ | | denotes duration):

𝐹 = 2 × 𝑃 × 𝑅

𝑃 + 𝑅
× 100, with 𝑃 =

𝑀 ∩𝑈

| |𝑀 | | and 𝑅 =
𝑀 ∩𝑈

| |𝑈 | | (2)

This computation is directly feasible for the videos of the SumMe
dataset, as their annotations are in the form of key-fragments. For
the videos of the TVSum dataset, the available frame-level anno-
tations are initially converted to key-fragment annotations by ap-
plying the methodology described in [26, 31]. So, for a given test
video we compare the generated summary with the available user
summaries for this video, and compute an F-Score for each pair
of compared summaries. Then, we average the computed F-Scores
(for the TVSum videos, as proposed in [26]) or keep the maximum
of them (for the SumMe videos, as suggested in [9] to account for
the fact that multiple summaries of varying length are possible for
a video) and form the final F-Score for this video. The computed
F-Scores for all test videos are averaged and this average indicates
the method’s performance on the test set.

The second evaluation approach (proposed in [20]) eliminates
the impact of any utilized video fragmentation and key-fragment
selection mechanism (e.g., the Knapsack algorithm). It assesses the
quality of a machine-generated video summary by considering
the produced frame-level importance scores at the output of a
network architecture as rankings, and comparing them with the
user-generated frame-level importance scores using the Kendall’s
𝜏 [15] and Spearman’s 𝜌 [16] rank correlation coefficients. In this
case, for a given test video we compare the estimated frame-level
importance scores with the available user annotations (also frame-
level importance scores) for this video, and compute the 𝜏 and 𝜌

values for each pair of comparisons. Then, we average the computed
sets of 𝜏 and 𝜌 values, and form the final 𝜏 and 𝜌 values for this
video. The computed 𝜏 and 𝜌 values for all test videos are then
averaged and this average defines the method’s performance on the
test set. This evaluation approach is applicable only on the videos
of the TVSum dataset, that have been annotated with frame-level
importance scores.

Finally, let us note that similarly to most of the existing works
(e.g., [2, 3, 5, 7, 8, 19, 21, 23, 29, 32, 34]) we split each dataset into a
training (80% of the videos) and a testing set (the remaining 20%
of the videos) and we run experiments on five different randomly-
created splits for each dataset. In the following, we report the aver-
age performance over these runs (cf. Tables 1-3 and 5).

4.2 Implementation details
For fair comparisons with the literature, videos are downsampled to
2 fps, and deep representations of size𝐷 = 1024 are obtained for the
sampled frames by taking the output of the pool5 layer of GoogleNet
[27] trained on ImageNet. The block size𝑀 is set to 60, based on the
findings of a sensitivity analysis that examined different options for
the value of parameter𝑀 (see Section 4.3). The learning rate and
the L2 regularization factor for training the architecture are equal
to 5 · 10−4, and 10−5, respectively. For initializing the network’s
parameters we use the Xavier uniform initialization approach with
gain =

√
2 and biases = 0.1 (as in [7]). Training is performed in a

full-batch mode (i.e., batch size is equal to the number of training
samples) using the Adam optimizer, and stops after 400 epochs.

Based on the observations of Mahasseni et al. [19] regarding
the impact of the length regularization factor 𝜎 on the summariza-
tion performance, instead of manually choosing a value for this
hyper-parameter we consider several values ranging in [0.5, 0.9]
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with a step equal to 0.1. After the end of the training, we apply a
model selection criterion that is responsible for selecting a well-
trained model by indicating both the training epoch and the value
of the length regularization factor 𝜎 . In particular, we initially keep
one trained model per considered 𝜎 value, by selecting the epoch
that corresponds to the minimum training loss. Then, our decision
on which one of these five models performs the best is based on
transductive inference. In particular, we extend the set of selected
models by adding an untrained model of our CA-SUM network
architecture (i.e., a model with random weights), and we apply the
entire set of the six models on the videos of the test set. Then, we
select the model that shows the best improvement compared to the
untrained model, normalized by the progress that should be made
by the untrained model for producing frame importance scores
that average towards the value of the length regularization factor 𝜎 .
More specifically, for each one of the trained models, we compute
the following score:

𝑆 =

���� 𝜇𝑡𝑟 − 𝜇𝑢𝑛

𝜎 − 𝜇𝑢𝑛

���� , (3)

where 𝜇𝑡𝑟 and 𝜇𝑢𝑛 correspond to the mean value of the produced
importance scores for the video frames over the entire set of test
videos, when using a trained and the untrained model respectively,
and are defined as follows:

𝜇𝑢𝑛 =
1
𝐹

𝐹∑︁
𝑗=1

1
𝑇𝑗

𝑇𝑗∑︁
𝑖=1

𝑦𝑢𝑛𝑖 and 𝜇𝑡𝑟 =
1
𝐹

𝐹∑︁
𝑗=1

1
𝑇𝑗

𝑇𝑗∑︁
𝑖=1

𝑦𝑡𝑟𝑖 , (4)

where 𝐹 denotes the number of test videos,𝑇𝑗 indicates the number
of frames of the 𝑗𝑡ℎ test video, and 𝒚𝒖𝒏 , 𝒚𝒕𝒓 denote the computed
importance scores for the frames of the current test video by the
untrained and the trained model, respectively. Given this set of
scores, we select as the best-performing model (i.e., the value of the
hyper-parameter 𝜎) the one with an 𝑆 score that is the closest to an
upper-bounding experimentally-defined threshold 𝜉 = 1.5, where
values of 𝑆 greater than this threshold indicate overfitting.

All experiments were carried out on a PC with an NVIDIA RTX
2080Ti GPU. To allow the reproduction of our results, the PyTorch
implementation of CA-SUM is publicly-available at: https://github.
com/e-apostolidis/CA-SUM.

4.3 Sensitivity analysis
Since the concentrated attention mechanism, which produces the
block diagonal sparse attention matrix, is in the core of the pro-
cessing pipeline at both training and inference stage, we examined
different options about the size𝑀 of the block. This size indicates
the length of the video fragment where the attention mechanism
concentrates each time, and thus the level of granularity for esti-
mating the attention-based significance of the video. The different
options for this hyper-parameter, and the summarization perfor-
mance of the CA-SUM model according to the F-Score, Spearman’s
𝜌 and Kendall’s 𝜏 measures, are presented in Table 1. These results
show that the increment of the block size almost constantly leads to
improved summarization performance on TVSum, but the findings
for the SumMe dataset are mixed. The best option for this hyper-
parameter is𝑀 = 60 as it leads to the highest performance on both
datasets and according to all considered measures. Higher values

Table 1: The performance of the CA-SUM method on the
SumMe and TVSum dataset, for different options about the
block size and according to the overlap between the machine
and the human-generated summaries (F-Score (%)), and based
on the comparison of the machine and the human-defined
importance scores for the video frames (Spearman’s 𝜌 and
Kendall’s 𝜏 rank correlation coefficients).

Block size SumMe TVSum TVSum
F-Score Spearman’s 𝜌 Kendall’s 𝜏

10 44.8 55.7 0.090 0.070
20 46.3 57.0 0.140 0.110
30 47.0 57.6 0.160 0.120
40 46.1 60.5 0.170 0.130
50 44.3 60.4 0.190 0.150
60 51.1 61.4 0.210 0.160
KTS 40.8 52.7 0.060 0.050

were not taken under consideration in this experiment, as the maxi-
mum possible value is dictated by the shortest video in our datasets,
which in our case is 60 frames. Finally, the use of blocks that corre-
spond to the detected video fragments by the KTS algorithm (which
is the most commonly used approach for video segmentation in the
relevant literature [2, 3, 5, 8, 11–14, 17, 19, 21, 24, 29, 30, 32–34])
results in the worst summarization performance.

4.4 Performance comparisons
The proposed CA-SUM method was compared with a random sum-
marizer and several state-of-the-art unsupervised video summa-
rization approaches. The performance of a random summarizer on
a given video was measured as proposed in [1]. In particular, we
initially assigned randomly-created importance scores to the video
frames based on a uniform distribution of probabilities. Then, we
computed fragment-level scores based on a predefined KTS-based
segmentation of the video. Finally, we used the Knapsack algorithm
to form a summary with a length that does not exceed 15% of video
duration. Random summarization was performed 100 times and we
report the average score over these runs. The performance of each
compared unsupervised method is from the corresponding paper,
unless stated otherwise. The reported values in Table 2 show that
the proposed CA-SUM method performs consistently good on both
of the utilized datasets, being the top-performing one on TVSum
and the second best performing one on SumMe, according to the
F-Score measure. In addition, our idea to work with a self-attention
mechanism seems to be right, as five out of the six top-performing
approaches ([12, 13, 17, 21]) contain some kind of attention mecha-
nism. The use of more simple versions of Generator-Discriminator
architectures ([2, 5, 29]) cannot lead to competitive performance
on the used datasets, given the current state of the art. Finally, the
integration of a self-attention mechanism into a network architec-
ture that is trained based on reinforcement learning ([21]) leads to
significantly higher performance compared to simpler architectures
that adopt the same learning approach ([8, 34]).

The improved summarization performance of the proposed CA-
SUM method is highlighted also by the results shown in Table 3.
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Table 2: Comparison with unsupervised video summariza-
tion approaches on SumMe and TVSum. F1 denotes F-Score
(%) and Rnk denotes the ranking of the compared methods.
Approachesmarked with a star (★) have been evaluated using
the same five splits of data.

SumMe TVSum Avg
Rnk

Data
splitsF1 Rnk F1 Rnk

Random summary 40.2 18 54.4 15 16.5 −
SUM-FCN𝑢𝑛𝑠𝑢𝑝 [24] 41.5 16 52.7 16 16 M Rand
DR-DSN [34] 41.4 17 57.6 12 14.5 5 Rand 1

EDSN [8] 42.6 14 57.3 13 13.5 5 Rand 2

RSGN𝑢𝑛𝑠𝑢𝑝 [32] 42.3 15 58.0 11 13 5 Rand
UnpairedVSN [23] 47.5 11 55.6 14 12.5 5 Rand
PCDL [33] 42.7 13 58.4 9 11 5 FCV
ACGAN [11] 46.0 12 58.5 8 10 5 FCV
★SUM-𝐼𝑛𝑑𝐿𝑈 [30] 46.0 12 58.7 7 9.5 5 Rand 3

★ERA [29] 48.8 8 58.0 11 9.5 5 Rand
★SUM-GAN-sl [5] 47.8 10 58.4 9 9.5 5 Rand
★SUM-GAN-AAE [2] 48.9 7 58.3 10 8.5 5 Rand
★MCSF𝑙𝑎𝑡𝑒 [14] 47.9 9 59.1 5 7 5 Rand
SUM-GDA𝑢𝑛𝑠𝑢𝑝 [17] 50.0 6 59.6 4 5 5 FCV
CSNet+GL+RPE [13] 50.2 5 59.1 5 5 5 FCV
CSNet [12] 51.3 1 58.8 6 3.5 5 FCV
★DSR-RL-GRU [21] 50.3 4 60.2 3 3.5 5 Rand
★AC-SUM-GAN [3] 50.8 3 60.6 2 2.5 5 Rand
★CA-SUM (Proposed) 51.1 2 61.4 1 1.5 5 Rand

Table 3: Comparison with unsupervised video summariza-
tion approaches on TVSum, using the rank correlation coef-
ficients proposed in [20].

Spearman’s 𝜌 Kendall’s 𝜏
Random summary [20] 0.000 0.000
Human summary [20] 0.204 0.177
DR-DSN [34] 0.026 0.020
CSNet [12] 0.034 0.025
RSGN𝑢𝑛𝑠𝑢𝑝 [32] 0.052 0.048
CSNet+GL+RPE [13] 0.091 0.070
DSR-RL-GRU [21] 0.114 0.086
CA-SUM (Proposed) 0.210 0.160

Our method is by far the top performing one, according to both
Spearman’s 𝜌 and Kendall’s 𝜏 rank correlation coefficients. More-
over, the performance of CA-SUM on the used data splits of the
TVSum dataset approximates the performance of the average hu-
man annotator. These results clearly indicate that the proposed
method is able to produce structures of frame-level importance
scores, that are highly aligned to the human preferences.

1The evaluation of this method was made using 5 randomly-created data splits, ac-
cording to the publicly-released code by the authors of this work.
2The evaluation of this method was made according to the protocol adopted in [34].
3In the original work this method was evaluated based on a variation of the established
evaluation approach, which compares the machine-generated summary with the single
ground-truth summary that is available for each video of the utilized datasets (purely
for supervised training). The results reported here are from the work in [29], which
assessed the performance of the SUM-𝐼𝑛𝑑𝐿𝑈 method according to the established
evaluation approach.

Table 4: Comparison of different unsupervised video summa-
rization methods with publicly available implementations,
with respect to the training time (seconds per training epoch)
and the amount of learnable parameters (in Millions).

Method
Training time
(sec / epoch) # Parameters

(in Millions)SumMe TVSum
DR-DSN [34] 0.33 0.98 2.63
SUM-𝐼𝑛𝑑𝐿𝑈 [30] 4 2.07 9.84 0.33
SUM-GAN-sl [5] 11.85 38.95 23.31
SUM-GAN-AAE [2] 16.39 54.23 24.31
CSNet [12] 4 28.43 89.85 100.76
DSR-RL-GRU [21] 0.23 0.50 13.64
AC-SUM-GAN [3] 28.25 93.80 26.75
CA-SUM (Proposed) 0.06 0.13 5.25

To investigate how well suited the produced video summaries
are for human consumption, we extracted some statistics about
the selected video fragments for creating these summaries (note:
in the sequel, the values in parentheses represent standard devia-
tion). The applied video summarization pipeline (described in the
last paragraph of Section 3) selects on average 27.85%(±3.21) and
32.93%(±4.50) of the video fragments of the SumMe and TVSum
videos, respectively. The mean duration of the selected fragments
for the SumMe videos is 2.62(±0.69) seconds and for the TVSum
videos is 2.26(±0.68) seconds. Given the fact that the average dura-
tion of the entire set of video fragments for the videos of the SumMe
and TVSum dataset is 4.91(±2.58) and 4.93(±3.40) seconds respec-
tively, we can see that the applied video summarization pipeline
selects fragments that are shorter than the average fragment length
(approximately half of it). However, we should point out that this se-
lection is significantly affected by the applied Knapsack algorithm,
which promotes the selection of short video fragments while trying
to maximize the overall importance of the video summary for a
given time budget.

Finally, we compared different unsupervised video summariza-
tion methods with publicly available implementations, with respect
to the training time (seconds per training epoch) and the amount of
learnable parameters (in Millions). These experiments were carried
out using the same PC (with an i5-11600K CPU, 32GB RAM and an
NVIDIA RTX 2080 Ti GPU) and the exact same five splits of data.
The findings presented in Table 4 show that the use of Generator-
Discriminator architectures for learning the summarization task
([2, 3, 5, 12]) is the most demanding approach, in terms of both the
training time and the memory required. The use of less complex
architectures where the estimation of the frames’ importance is
based on the modeling of the frames’ dependencies purely using
RNNs ([30, 34]), can significantly reduce the training time, but at
the cost of a lower summarization performance (as shown in Table
2). Finally, the use of self-attention mechanisms - either solely (as
in our proposed method) or in combination with RNNs (as in [21])
- leads to several times faster training, while ensuring high sum-
marization performance. Being highly parallelizable, the proposed

4Code re-implemented and publicly-released by the authors of [14].
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Table 5: Ablation study based on the performance (F-Score (%), Spearman’s 𝜌 , Kendall’s 𝜏) of different variants of the proposed
model, on SumMe and TVSum.

Block diagonal
sparse attention matrix

Attentive frame
uniq. & diver.

SumMe TVSum TVSum
F-Score Spearman’s 𝜌 Kendall’s 𝜏

Variant #1 X X 45.8 58.9 NaN NaN
Variant #2 ✓ X 47.4 56.5 0.010 0.010
Variant #3 X ✓ 45.8 58.9 NaN NaN
CA-SUM w/o threshold 𝜉 ✓ ✓ 49.3 61.2 0.200 0.150
CA-SUM (Proposed) ✓ ✓ 51.1 61.4 0.210 0.160

CA-SUM method needs the least time for model training; and de-
spite the fact that we train five different models (one per different
value of the length regularization factor 𝜎), the overall time needed
for training still remains at the very low levels, being very close to
the time required by the fastest method (DSR-RL-GRU) among the
remaining ones. Finally, with respect to the required computational
resources for training the proposed CA-SUM method, the memory
footprint of the network architecture is 1.16 GBs; this means that
our method can process up to 2 hours of video content (in a single-
batch mode) using a GPU with memory capacity similar to that of
an NVIDIA RTX 2080 Ti. Nevertheless, working with significantly
larger videos than the ones included in the utilized datasets, would
require the tuning of some hyper-parameters of our method, such
as the block size𝑀 .

4.5 Ablation study
To assess the impact of each of the main changes that were intro-
duced in the processing pipeline of the supervised VASNet method
[7] in order to develop our unsupervised CA-SUM model, we con-
ducted an ablation study that included the following variants of
the proposed architecture:

• Variant #1 leaves out the entire concentrated attention mech-
anism, thus avoiding the computation of both the block di-
agonal sparse attention matrix and the estimates about the
attentive uniqueness and diversity of the video frames. This
variant can be considered as an unsupervised version of the
VASNet method [7].

• Variant #2 does not compute any estimates about the frames’
uniqueness and diversity, and the created block diagonal
sparse attention matrix can be seen as the case where the
attention mechanism performs local attention only.

• Variant #3 excludes the generation of a block diagonal sparse
attention matrix, and the computed estimates about the
frames’ attentive uniqueness and diversity are used only
to enrich the output of a matrix multiplication process that
involves the Attention (𝑨) and the Value (𝑽 ) matrices.

Besides the above described variants, we also examined the per-
formance of a variation of our CA-SUM method, that does not
use any threshold 𝜉 during model selection. The results in Table
5 show that removing the block diagonal sparse attention matrix
(Variants #1 and #3) does not allow the network to learn anything
meaningful. In particular, the network sticks in a case where all
the video frames are assigned with the same extremely low (≈ 0)
or extremely high (≈ 1) importance scores. The generation of the

summary completely depends on the choices made by the Knap-
sack algorithm, that are purely related to the length of the video
fragments. Since there is no counted variation in the assigned im-
portance scores, no values can be computed for the Spearman’s 𝜌
and Kendall’s 𝜏 rank correlation coefficients. In the case where no
estimates about the frames’ attentive uniqueness and diversity are
computed, and the block diagonal sparse attention matrix provides
information about the frames’ attention only at the local-level (Vari-
ant #2), the network also fails to learn the summarization task. The
computed F-Score, Spearman’s 𝜌 and Kendall’s 𝜏 values, indicate
a random-level performing summarizer on both utilized datasets.
The combination of a block diagonal sparse attention matrix with
attention-based statistics about the frames’ uniqueness and diver-
sity, as proposed, allows the network architecture to effectively
learn the video summarization task and exhibit state-of-the-art
performance on both of the utilized datasets and according to both
of the adopted evaluation protocols. Finally, the variation of our
method that excludes the threshold 𝜉 for model selection, maintains
the high levels of video summarization performance on TVSum
and performs competitively on SumMe.

5 CONCLUSION
In this paper, we proposed a new method for unsupervised video
summarization, that aims to overcome drawbacks of existing ap-
proaches with respect to: i) unstable training of Generator - Dis-
criminator architectures, ii) the use of RNNs for modeling long-
range frames’ dependencies, and iii) the parallelization ability of
the training process of existing RNN-based network architectures.
The developed CA-SUM method relies on the use of a self-attention
mechanism, and extends its functionality by concentrating atten-
tion on non-overlapping blocks in the main diagonal of the atten-
tion matrix and by utilizing information about the frames’ unique-
ness and diversity. The proposed methodology allows the attention
mechanism to make better estimates about the importance of differ-
ent parts of the video. Experiments on two benchmarking datasets
(SumMe and TVSum) indicated the competitiveness of our CA-SUM
method against other state-of-the-art unsupervised summarization
approaches, and demonstrated its ability to produce summaries
that meet the human expectations.
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